______________________________________________
Esta é uma visão minha dos principais pontos que considerei relevantes no livro de Antony Giddens – Mundo em Descontrole da editora Record – 2005
Salvo por alguns contextos marginais, na Idade Média não havia nenhum conceito de risco.
A palavra “risk” parece ter se introduzido no inglês através do espanhol ou do português,
Risco não é o mesmo que infortúnio ou perigo. Risco se refere a infortúnios ativamente avaliados em relação a possibilidades futuras.
Todas as culturas anteriores, entre as quais as primeiras grandes civilizações do mundo, como Roma, ou a China tradicional, viveram sobretudo no passado. Usavam as idéias de destino, sorte ou a vontade dos deuses onde agora tendemos a usar risco.
É claro que essas idéias não desapareceram completamente com a modernização.
O risco é a dinâmica mobilizadora de uma sociedade propensa à mudança, que deseja determinar seu próprio futuro em vez de confiá-lo à religião, à tradição ou aos caprichos da natureza.
O capitalismo moderno insere-se no futuro ao calcular lucro e perdas futuros, e, portanto risco, como um processo contínuo.
O seguro é a base a partir da qual as pessoas estão dispostas a assumir riscos.
, as formas modernas de seguro tiveram início na vida náutica. Os primeiros seguros marítimos foram lavrados no século XVI. Em 1782 um contrato de seguro cobrindo riscos além-mar foi firmado pela primeira vez por uma companhia de Londres.
Seguro é algo só concebível quando acreditamos num futuro humanamente arquitetado.
O risco externo é o risco experimentado como vindo de fora, das fixidades da tradição ou da natureza.
O risco fabricado diz respeito a situações em cujo confronto temos pouca experiência histórica.
Cada vez que alguém entra num carro, por exemplo, é possível calcular as chances que essa pessoa tem de ser envolvida num acidente. Isso é previsão atuarial – envolve uma longa série temporal. As situações de risco fabricado não são assim. Simplesmente não sabemos qual é o nível de risco, e em muitos casos não saberemos ao certo antes que seja tarde demais.
... a maneira mais eficiente de enfrentar o crescimento do risco fabricado é limitar a responsabilidade mediante a adoção do chamado “princípio do acautelamento”. A idéia do princípio do acautelamento surgiu pela primeira vez na Alemanha no início da década de 1980,... propõe que se deve agir no caso de questões ambientais ...ainda que haja incerteza científica com relação a elas.
Nossa época não é mais perigosa – nem mais arriscada – que as de gerações precedentes, mas o equilíbrio de riscos e perigos se alterou. Vivemos num mundo em que perigos criados por nós mesmos são tão ameaçadores, ou mais, quanto os que vêm de fora.
Finalmente, é impossível adotar simplesmente uma atitude negativa em relação ao risco. O risco sempre precisa ser disciplinado.
quinta-feira, 26 de maio de 2011
Human Error Taxonomy for Power Electric Systems
Rômulo F. T. Vilela, Msc., UFPE
Enrique L. Droguett, Ph.D., UFPE
Resumo
Este artigo propõe uma taxonomia para classificar e estudar o erro humano em intervencões (operacão e/ou manutencão) em Sistemas Elétricos de Potência. Esta taxonomia é a combinacão de outros trabalhos consolidados por Rasmussen, Reason e Berliner. Os resultados foram obtidos através do estudo sistemático de 131 relatórios de erro humano coletados em uma empresa brasileira de energia elétrica que provocaram interrupcões no sistema. As principais descobertas, desenvolvimentos conceituais e aplicacões são descritos neste artigo.
Abstract
This paper proposes a taxonomy to classify and study the human error in interventions (operation and/or maintenance) on Power Electric Systems. This taxonomy is a combination of the ones consolidated by Rasmussen, Reason and Berliner. The resulting approach has allowed for the systematic study of 131 reports of human errors that caused interruptions in a Brazilian Power Electric Company. The main findings of both conceptual developments and application are fully described from the paper.
Keywords: human error; taxonomy; power electric system.
1. INTRODUCTION
As long as the electricity is available, no one thinks much about it. The importance is realized when the power goes out. Whether it’s during the day or at night, electricity keeps people lives in order. It affects their business, schedule and even their entertainment. Electricity runs everything in people’s everyday life. Gas stations can’t pump gas without it. Businesses have to close because their cash registers won’t work without it. Restaurants can’t cook food without it. Everything in contemporaneous world depends on having the power to keep them running. The main effort is thus against its outage.
A power outage (also known as a power cut, power failure, power loss, or blackout) is a short- or long-term loss of the electric power to an area. There are many causes of power failures in an electricity network. Examples of these causes include faults at power stations, damage to power lines, substations or other parts of the electricity system, a short circuit, or the overloading of electricity mains. The major causes of power system downtime include utility outages, human error, externally and internally generated disturbances, and maintenance of power system components and failure of Power System components. Disruptions in incoming utility power are unavoidable, whether caused by lightning strikes, construction projects or problems with power company equipment. A widespread blackout can affect large areas. This demonstrates just how quickly a small problem in one area can ripple across the grid to create a widespread outage.
To avoid the power outage or blackouts, studies for decades focused on increase the reliability of electric equipments and work processes. On result, the reliability of power electric system has impressing increased. With better equipments and safer work process the focus naturally shifted to the human error. In fact, the human error has become one of the main factors for systems reliability measurement. It seems inarguable not only on power electric systems but also in areas like Nuclear Power Plants, Aviation, Shipping Industry, Communication Networks, Chemical Industry and the like,. According to (Rasmussen 1999), the analyses of industrial accidents have often concluded that human error is a determining factor in 70-80% of the cases.
Based on (Rasmussen 2003), in the 1970s and 1980s there was great interest among applied psychologists and systems reliability engineers in analyzing accidents and “near miss” incidents in large scale systems where public safety was a primary concern. Efforts to define and develop taxonomies of human error were then in curse .The main authors for such a process were perhaps Rasmussen, Reason and Hollnagel, providing the basis for the structured and systematic formalism available nowadays for developing and implementating human error data sources. The main reasoning underlying studies in this line is that the development of human error taxonomies emerge as the first step to understand the human error process and than propose alternatives to mitigate and/or to avoid these undesirable events. However, it is yet necessary a complementary approach which mix the main features of the existing literature in order to provide the elements need for better statistical models.
Following this reasoning, the present paper proposes a taxonomy to classify and study the human error in interventions (operation and/or maintenance) on Power Electric Systems, based on the main features provided by the literature. The proposed approach has been motivated, developed and validated by the studied of 605 power transmission interruptions caused by human error between 1998 and 2009. The data were collected from a Brazilian Electric Power Company. These human errors were reported by specific reports named RSHE (report shutdown by human error). At first glance, the amount of different causes of human error collected, in each of 605 interruptions, has suggested the need of a taxonomy to unify the language and to allow for adequate statistical analyses. Actually, one of the main areas of development in human reliability analysis has been the elaboration of human reliability taxonomies.
2. THE HUMAN ERROR TAXONOMY
“An erroneous action can be defined as an action which fails to produce the expected result and/or which produces an unwanted consequence” (Hollnagel 1998). Another important definition of human error is the one proposed by (Reason 1990): “Error will be taken as a generic term to encompass all those occasions in which a planned sequence of mental or physical activities fails to achieve its intended outcome, and when these failures cannot be attributed to the intervention of some chance agency.”
In general, the human behavior is a fundamental contributor to decrease the efficiency and security of critical systems. However, it is important to note that you can not dismiss the human element of this interaction. Therefore it is important to study and look for mitigate the outcomes from human error in complex systems like Power Electric Systems.
In some human error the negative outcome is almost immediate, in others situations the consequences of human error will be know only after some times. In this way, (Reason and Maddox 2005) define:
1. Active failures are the result of unsafe acts (errors and violations) committed by those at the "sharp end" of the system (pilots, air traffic controllers, AMTs, etc.). They are the people at the human-system interface whose actions can, and sometime do, have immediate adverse consequences.
2. Latent failures are created as the result of decisions, taken at the higher echelons of the organization. Their damaging consequences may lie dormant for a long time, only becoming evident when they combine with local triggering factors (e.g., errors, violations and local conditions) to breach the system's defenses.
The HRA (Human Reliability Analysis), has been used to study the execution of human actions and their interactions with a system, taking into account for their limitations and factors influencing the human performance (Menezês and Droguett 2005). Human reliability is the probability that a person properly run an activity required by the system within a set time (if applicable), which would not degrade the system (Swain and Guttmann 1983). In this way, one can notice the fundamental need of resources provided by an adequate taxonomy for performing HRA; without these prerequisites the HRA would naturally become useless or inconsistent with the system being modeled.
One of the main challenges to analyze the occurrence of human error is the need of a formal language to standardize the concepts, i. e. a framework to link common code between multiple projects. In fact, it is the main target when developing a taxonomy. The subject of interest is thus to homogeneously classify errors to provide adequate data to be compared and/or aggregated for analytical studies. In an effort to evolve with this theme, (Rasmussen 1982) presents a framework to discuss the operator behavior characteristic, during a performance task, in three domains:
1. Skill-based, tasks that require manual skills; “In the skill-based domains, including automated, more or less subconscious routines, performance is controlled by stored patterns of behavior in a time-space domain. Errors are related to variability of force, space or time coordination”(Rasmussen 1982)
2. Rule-based, tasks based on predefined procedures, require training; “The rule-based domain includes performance in familiar situations controlled by stored rules for coordination of subroutines, and errors are typically related to mechanisms like wrong classification or recognition of situations, erroneous associations to tasks, or to memory slips in recall of procedures”(Rasmussen 1982); and
3. Knowledge-based, complex tasks, require decision, require attention; “The third behavioral domain is called upon in case of unique, unfamiliar situations for which actions must be planned from an analysis and decision based on knowledge of the functional, physical properties of the system and the priority of the various goals. In this domain, the internal data processing functions used for the task are very person and situation dependent and vary with details in the task context, with the extent and type of knowledge immediately available to the person, and with his subjective preferences. In general, errors in this domain can only be defined in relation to the goal of the task and generic error mechanisms can only be defined from very detailed studies based on verbal protocols which can supply data on the actual data process”(Rasmussen 1982).
This taxonomy proposed by Rasmussen classifying the human error in three domains had emerged as a promising way for classifying these kinds of events. However, a criticism to be made to such alternative concerns of this generality in the sense that the resulting classification does not achieve the causes of the human error, an important information for dealing with complex systems like the Power Electric ones. It was yet necessary a deeper analysis to understand the operator behavior during a performance task that produced a human error in an intervention of Power Electric Systems, for instance.
In response to this claim, in 1990, Reason presented a classification deeper than the Rasmussen’s one. He proposes a taxonomy based on the operator behavior during a performance task based in cognitive characteristics. “Three distinctions have proved useful in identifying the various origins of less than adequate (LTA) performance. Such distinctions are also important since different types of human error have different psychological origins, occurring in different parts of the system, and requiring different methods for remediation” (Reason and Maddox 2005). Reason firstly proposes two ways in which this error can occur: slips and mistakes.
1. Slips: “First, the plan of action may be perfectly adequate, but the actions do not go as planned. That is, we planned to do the right thing, but something happened that prevented us from doing it properly. Some necessary act(s) may be omitted or an unwanted act(s) may intrude. Alternatively, the right actions can be carried out, but in the wrong order, or in relation to the wrong objects, or poorly timed, or clumsily executed. These are execution failures and are commonly termed slips, lapses, trips, or fumbles” (Reason and Maddox 2005).
2. Mistakes: “The second potential locus of error is in the planning itself. The actions may go entirely as planned, but the plan itself is not adequate to achieve its intended outcome. These are higher-level failures, termed mistakes, associated with the formulation of the plan.” (Reason and Maddox 2005).
“Slips and lapses are errors which result from some failure in the execution and/or storage stage of action sequence, regardless of whether or not the plan which guided them was adequate to achieve its objective” (Reason 1990). The main difference of slip and lapse is that whereas slips are observable as externalized actions not as planned, the lapses involve failures of memory. “Mistakes may be defined as deficiencies or failure in the judgmental and/or inferential process involved in the selection of an objective or in the specification of the means to achieve it, irrespective of whether or not the actions directed by this decision-scheme run according to plan” (Reason 1990). Derivate in large part from Rasmussen’s classification, Reason proposed a conceptual framework – the generic error modeling system (GEMS), integrating the skill-rule-knowledge classification from Rasmussen with the slip-lapse-mistake from Reason. Using this framework, Reason subdivides the human error behavior in a sort of deeper modes of failure to characterize the error. Reason in (Reason and Maddox 2005) defines modes of failure: “in that errors arise from being in the wrong control mode with respect to current demands of the task. That is, the higher levels of the cognitive system are running open-loop (in relation to the moment-to-moment control of the actions) when they should have been closed-loop, and conversely”. Analyzing the operator behavior when he is erring, it makes possible to classify this behavior according the Reason’s framework. See Table 1.
In the face of the current needs, this framework could be considered a good tool to classify the human error in systems like the Power Electric ones. Reason went deep in cognitive behavior, analyzing each error type (slip, lapse or mistake) into the appropriated domain (skill-based, rule-based and knowledge-based) and mainly describing a good sub-division for the modes of failure. Each error type on the Power Electric System could be then sub-divided into specific failure modes to permit better (deeper) classification of the error during an intervention (operator and/or maintenance). This “better” classification can help the analyst to know the real reason underlying the operator when erring and this will permit alternative proposals to mitigates; minimize the outcomes or even to lead to the total blockade of the undesirable consequences of the error. Analyzing the failure mode makes possible to discover needs of more training in the specific task or psychological intervention to focus the operator attention during the execution of important and critical tasks. In some situations, it is possible to find out some physiological or psychological diseases, like alcohol addict, or worse pathologies. Critical tasks need attention focus to avoid slips and lapses. To avoid mistakes it is necessary an advanced mental state of the operator to make correct decision on time, using his mental experience and good mental health.
Although jointing the Reason and Rasmussen taxonomy promotes a good shape to classify the human error on Power Electric Systems, and permit the analyst suggest measures to avoid and/or mitigate the outcomes of human error, it is yet incomplete. The knowledge of error failure mode says nothing about the elementary behavior of the operator during the failed action. What action the operator was doing when the error occurred? Verifying? Comparing? Locating? It was yet necessary compare this classification with the elementary behavior that causes the human error: a third level of detail. This knowledge is necessary to complete the diagnosis of the human error.
In order to achieve theses goals, it is proposed here to hybrid the Rasmusen-Reason framework (Table 1) with the reasoning underlying (Berliner, Angell et al. 1964). The related methodology aimed at proposing a taxonomy for models of information processing that translates through verbs, units of behavior in relation to processes of perception, cognition, action and communication. The units of behavior are presented in Table 2
In a recent work, (Begosso 2005) presents the S.PERERE, a software directed to simulate the human error according to the hybridism of the taxonomies proposed by Rasmussen and Reason to classify the human error in interaction men machine. To create an algorithm to simulate the human behavior, he also included the (Berliner, Angell et al. 1964) classification.
Aggregating these three sources: Rasmussen taxonomy, Reason taxonomy with the taxonomy of Berliner is possible to promote the development of a unique taxonomy describe the human error on a Power Electric System in a more complete form. With this unified taxonomy, the human error could be classified using: the three domains of errors (skill, rule or knowledge); the type of error (slip, lapse or mistake); the failure mode and the verb which represents human behavior at the time of occurrence of the error. This more fully classification will allows the analyst build a table with the human error description and classifications of a set of occurrences collected in field about interventions on the Power Electric System that resulted in Power Electric System interruptions caused for human error. This table with the human error collected, forming a data base to explore statistically and create information about the reasons and outcomes these human errors. This statistic analysis could be shows bias, correlation and look for answers which can point possible change of procedures to reduce the human error. Applying descriptive statistics in this table is possible to infer recurrent features of human error that can be worked out internally in the organization to minimize the outcome of power electric system interruptions, during necessary operate and/or maintenance interventions. Thus, this paper propose this unified taxonomy framework, based on some of the main references of human reliability literature.
The following section describes the data collection in a Power Electric Company according to the proposed taxonomy; the building of the table with 131 cases of human error which resulted in power electric system interruptions and the application of this taxonomy proposed. Additionally are present two examples to show how to apply the taxonomy in real cases.
3. THE APPLICATION OF THE TAXONOMY PROPOSED IN A BRAZILIAN POWER ELECTRIC COMPANY
This part describes how the Human Error data were collected from a Brazilian Power Electric Company, how the Human Error Reports named RSHE (report shutdown by human error) were analyzed and how the tables: “Summary of Occurrences” and “Human Error Data Base Table” were builder, using the taxonomy proposed above.
The Brazilian Power Electric Company studied, has collected and classified Human Errors since 1998. The resulting data has been used as a decision index to formulate its non interrupt system safety policy. Discontinuities in the Electric System Operarating are penalized with fines, by the Regulatory Agency (ANEEL). These fines are of high values and proportional to the time of electric system interruption and the load interrupted. In this context the Human Error represents an important index on quality of energy offered to the consumers. These human error reports (RSHE) are founded in a data base on the company and not available to the public.
Since 1998 to 2009, there are available 605 reports relating human errors in electric power system intervention. See Table 3
Each human error in complex systems such as the Electric Power must be analyzed so its mechanism are understood, but in a big universe of information it’s necessary to choice the mainly events to apply taxonomy, due to be a very complex task analyze each of one human error reports. Each 605 human error reports were analyzed and 474 of them didn’t cause load interruption. For example, the load was immediately transferred for other power source or the load didn’t be energized, or it was released for maintenance. These 474 human errors reports were not considered because they not represent great loses for the company. On the other hand the 131 remains human errors caused great loses. One by one of these 131 human errors report were analyzed in details and classified according the taxonomy proposed above.
Each human error report is standardized and has the follow information about the system configuration:
• An event description: with date, time, place and a summary description of the human error;
• A system configuration;
• Historical occurrence: with the task step by step and on chronological sequence;
• Relevant facts and data about the event;
• Task analysis;
• Operational performance analysis;
• Ishikawa’s diagram;
• Steps taken;
• Action plan to avoid the repetition of this event;
• Conclusions
• Responsible for preparing the report
These reports have enough information to enable an expert in Electrical Engineering to know the real cause of the human error. However, for classify the human error using the Rasmussen/Reason and Berliner taxonomy as above proposed, it is a difficult task. To get this objective is essential begin classifying firstly the error level (skill, rule or knowledge), so the error type, so the mode of the error and finally the Berlinner process and the elementary behavior.
To illustrate the application of these proposal taxonomy two real cases examples, extract from “Summary of Occurrences” be presented. The first example was choosing as active failure during the maneuver operation for de-energizing a circuit breaker and the second example as a latent failure during maintenance to fit a protective relay.
Example 1: The operator shut off the 12J1 circuit breaker when he must shut off the 12J2 circuit breaker near in the some panel.
Report error n. 046 April, 20 2001, load interrupted 8,00MW. Summarized description:
Upon completion of the maintenance was begun the process of returning the circuit to operate the installation, and inspections by operators normalized in the courtyard and started the actions of control room, with the drive lock 12J2, and confirmed its closure through signaling in the panel and also a positive sign that the person responsible for maintenance, from the courtyard toward the control room, heard the characteristic sound of the circuit breaker closing. Then the operator went to the panel 12J1, (identical to the neighbor and 12J2), made the opening of 12J1 (thinking that by taking the opening 12J2), confirmed the signs on the panel and got a positive sign of the maintainer (which also moved into the control room. and once again heard the characteristic sound of the drive circuit breaker). The operator recorded the time (16:15 h), signed the card confirming receipt of the breaker, and consulted Program Maneuvers normalization of 12J2. Right now, received a call from CROL questioning what was going on in the installation, because there was a complaint of COSERN, as the lack of tension in Tangara, at which time the operator saw maneuvering wrong breaker.
Analyze:
Clearly was a failure in domain of skill-based, the rule was correct and the operator selected a wrong object due similarity with desirable object, soon the operator committed a slip. The operator perform tasks without paying due attention to what they are doing, this is a definition for perceptual confusion as failure mode. The operator failures in perceive the correct breaker identification; soon his elementary behavior during the error was identify during a perceptive process.
In short:
Domain: skill-based
Type: slip
Mode of failure: perceptual confusion
Process: perceptive
Elementary behavior: identify
Example 2: the maintenance technician didn’t make correct rely adjust. When the operator push the breaker bottom, occurred the interruption.
Report error n. 012 March, 03 1999, load interrupted 11,00MW. Summarized description:
Performance of the under frequency relay (81) causing the automatic shutdown of LT 02V6. As the frequency variation would not be sufficient to actuate the relay 81 of the SE GVM, the SSCP scheduled inspection / testing in the scheme, noting that timing (62-1) of the relay 81 was incorrect, and we found a value adjusted to 5.0 s, when the value set by the setting order is 11.0. The last change in this setting relay was held for nearly three years. The setting order sent to change the relay time (62-1) of 5.0 s to 11.0 s. However,
found himself in the form of measuring time of 5.0 s recorded in field
"left." We also observed that the relay is defective, not accepting
adjustments in excess of 10.0 s.
Analyze:
The Setting Order Instructions content rules to adjust relays. As the maintenance technician applied the rule incorrectly, your error was in domain of rule-based. In consequence he committed a mistake. For the technical maintenance, certain properties of the space problem may have been coded inaccurately; this is encoding deficiencies, according the failure mode. The technician failure to examine carefully, and see with critical sense the setting order, soon his elementary behavior during the error was inspect during a perceptive process.
In short:
Domain: rule-based
Type: mistake
Mode of failure: encoding deficiencies
Process: perceptive
Elementary behavior: inspect
4. CONCLUSIONS AND FURTHER WORKS
This paper discussed the importance of electric energy nowadays and a necessity of maintain the source uninterrupted for the costumers. After the great development of equipment and work process reliability, the focus shifted to human error. Subsequently, it was presented a brief review of human error taxonomy since Rasmussen 1982 towards Reason and Hollnagel until now in 2010. Aggregating the taxonomy proposed by Rasmussen and Reason with the taxonomy proposed by Berliner with the verbs that define elementary behavior, was proposed a new taxonomy specific shaped to Electric Power System. This taxonomy proposed was applied in 131 real cases from a Brazilian Electric Power Company. Despite the difficulty to identify the failure mode of error in each case analyzed, duded data recorded by the Company, the taxonomy showed efficiency to classify the human error involved in a power electric system intervention.
To analyze the 131 human error reports was created a table with the complete classification. For future works this table with the human error collected, forming a data base to explore statistically and create information about the reasons and outcomes these human errors. This statistic analysis could be shows bias, correlation and look for answers which can point possible change of procedures to reduce the human error. Applying descriptive statistics in this table is possible to infer recurrent features of human error that can be worked out internally in the organization to minimize the outcome of power electric system interruptions, during necessary operate and/or maintenance interventions.
REFERENCES
1 . Rasmussen, J. (1999). "The concept of human error: is it useful for the design of safe systems?" Safety Science Monitor 3.
2 . Rasmussen, J. (2003). "The role of error in organizing behaviour." Quality Safety Health Care - QSHC 12: 377-383.
3 . Hollnagel, E. (1998). Cognitive Reliability and Error Analysis Method, Elsevier.
4 . Reason, J. (1990). Human Error. Cambridge, Cambridge University Press.
5 . Reason, J. and M. Maddox (2005). Human Error, NextPage LivePublish
6 . Menezês, R. C. and E. L. Droguett (2005). Uma metodologia para a avaliacão da confiabilidade humana em atividades de substituicão de cadeias de isoladores em linhas de transmissão. Recife, Universidade Federal de Pernambuco.
7 . Swain, A. D. and H. E. Guttmann (1983). Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Application. Washington, US Nuclear Regulatory Comission.
8 . Rasmussen, J. (1982). "Human Error A Taxonomy for Describing Human Malfunction in Industrial Installation." Journal of Occupational Accidents 4: 311-333.
9 . Berliner, D. C., D. Angell, et al. (1964). Behaviors, mesures and instruments for performance evaluation in simulated environments. Symposium and Workshop on the Quantification of Human Performance. Albuquerque - New Mexico: 277-296.
10 . Begosso, L. C. (2005). S.PERERE - Uma Ferramenta Apoiada por Arquiteturas Cognitivas para o Estudo da Confiabilidade Humana. Engneharia Elétrica. São Paulo, Escola Politécnica da Universidade de São Paulo. Doutor: 274.
BIOGRAPHIES
Romulo Fernando Teixeira Vilela
Department of Production Engineering Federal University of Pernambuco S/N Academico Helio Ramos Avenue Recife, Pernambuco 50000-000 Brazil
rftvilela@gmail.com
Romulo F. T. Vilela is a Reliability Engineering Researcher on technologic risk group from the Production Engineering Department at the Federal University of Pernambuco (Brazil). He holds a bachelors degree in Electric Engineering from the Federal University of Pernambuco (1980) and a master science degree in Production Engineering from the University of Pernambuco (2001).
Enrique L. Droguett
Department of Production Engineering Federal University of Pernambuco S/N Academico Helio Ramos Avenue Recife, Pernambuco 50000-000 Brazil
ealopez@ufpe.br
Enrique L. Droguett is an associate professor at the Federal University of Pernambuco (Brazil), Department of Production Engineering. His research interests include Bayesian treatment of uncertain evidence and methods for Probabilistic Risk Assessment. He received his Ph. D. from the University of Maryland (1999).
Enrique L. Droguett, Ph.D., UFPE
Resumo
Este artigo propõe uma taxonomia para classificar e estudar o erro humano em intervencões (operacão e/ou manutencão) em Sistemas Elétricos de Potência. Esta taxonomia é a combinacão de outros trabalhos consolidados por Rasmussen, Reason e Berliner. Os resultados foram obtidos através do estudo sistemático de 131 relatórios de erro humano coletados em uma empresa brasileira de energia elétrica que provocaram interrupcões no sistema. As principais descobertas, desenvolvimentos conceituais e aplicacões são descritos neste artigo.
Abstract
This paper proposes a taxonomy to classify and study the human error in interventions (operation and/or maintenance) on Power Electric Systems. This taxonomy is a combination of the ones consolidated by Rasmussen, Reason and Berliner. The resulting approach has allowed for the systematic study of 131 reports of human errors that caused interruptions in a Brazilian Power Electric Company. The main findings of both conceptual developments and application are fully described from the paper.
Keywords: human error; taxonomy; power electric system.
1. INTRODUCTION
As long as the electricity is available, no one thinks much about it. The importance is realized when the power goes out. Whether it’s during the day or at night, electricity keeps people lives in order. It affects their business, schedule and even their entertainment. Electricity runs everything in people’s everyday life. Gas stations can’t pump gas without it. Businesses have to close because their cash registers won’t work without it. Restaurants can’t cook food without it. Everything in contemporaneous world depends on having the power to keep them running. The main effort is thus against its outage.
A power outage (also known as a power cut, power failure, power loss, or blackout) is a short- or long-term loss of the electric power to an area. There are many causes of power failures in an electricity network. Examples of these causes include faults at power stations, damage to power lines, substations or other parts of the electricity system, a short circuit, or the overloading of electricity mains. The major causes of power system downtime include utility outages, human error, externally and internally generated disturbances, and maintenance of power system components and failure of Power System components. Disruptions in incoming utility power are unavoidable, whether caused by lightning strikes, construction projects or problems with power company equipment. A widespread blackout can affect large areas. This demonstrates just how quickly a small problem in one area can ripple across the grid to create a widespread outage.
To avoid the power outage or blackouts, studies for decades focused on increase the reliability of electric equipments and work processes. On result, the reliability of power electric system has impressing increased. With better equipments and safer work process the focus naturally shifted to the human error. In fact, the human error has become one of the main factors for systems reliability measurement. It seems inarguable not only on power electric systems but also in areas like Nuclear Power Plants, Aviation, Shipping Industry, Communication Networks, Chemical Industry and the like,. According to (Rasmussen 1999), the analyses of industrial accidents have often concluded that human error is a determining factor in 70-80% of the cases.
Based on (Rasmussen 2003), in the 1970s and 1980s there was great interest among applied psychologists and systems reliability engineers in analyzing accidents and “near miss” incidents in large scale systems where public safety was a primary concern. Efforts to define and develop taxonomies of human error were then in curse .The main authors for such a process were perhaps Rasmussen, Reason and Hollnagel, providing the basis for the structured and systematic formalism available nowadays for developing and implementating human error data sources. The main reasoning underlying studies in this line is that the development of human error taxonomies emerge as the first step to understand the human error process and than propose alternatives to mitigate and/or to avoid these undesirable events. However, it is yet necessary a complementary approach which mix the main features of the existing literature in order to provide the elements need for better statistical models.
Following this reasoning, the present paper proposes a taxonomy to classify and study the human error in interventions (operation and/or maintenance) on Power Electric Systems, based on the main features provided by the literature. The proposed approach has been motivated, developed and validated by the studied of 605 power transmission interruptions caused by human error between 1998 and 2009. The data were collected from a Brazilian Electric Power Company. These human errors were reported by specific reports named RSHE (report shutdown by human error). At first glance, the amount of different causes of human error collected, in each of 605 interruptions, has suggested the need of a taxonomy to unify the language and to allow for adequate statistical analyses. Actually, one of the main areas of development in human reliability analysis has been the elaboration of human reliability taxonomies.
2. THE HUMAN ERROR TAXONOMY
“An erroneous action can be defined as an action which fails to produce the expected result and/or which produces an unwanted consequence” (Hollnagel 1998). Another important definition of human error is the one proposed by (Reason 1990): “Error will be taken as a generic term to encompass all those occasions in which a planned sequence of mental or physical activities fails to achieve its intended outcome, and when these failures cannot be attributed to the intervention of some chance agency.”
In general, the human behavior is a fundamental contributor to decrease the efficiency and security of critical systems. However, it is important to note that you can not dismiss the human element of this interaction. Therefore it is important to study and look for mitigate the outcomes from human error in complex systems like Power Electric Systems.
In some human error the negative outcome is almost immediate, in others situations the consequences of human error will be know only after some times. In this way, (Reason and Maddox 2005) define:
1. Active failures are the result of unsafe acts (errors and violations) committed by those at the "sharp end" of the system (pilots, air traffic controllers, AMTs, etc.). They are the people at the human-system interface whose actions can, and sometime do, have immediate adverse consequences.
2. Latent failures are created as the result of decisions, taken at the higher echelons of the organization. Their damaging consequences may lie dormant for a long time, only becoming evident when they combine with local triggering factors (e.g., errors, violations and local conditions) to breach the system's defenses.
The HRA (Human Reliability Analysis), has been used to study the execution of human actions and their interactions with a system, taking into account for their limitations and factors influencing the human performance (Menezês and Droguett 2005). Human reliability is the probability that a person properly run an activity required by the system within a set time (if applicable), which would not degrade the system (Swain and Guttmann 1983). In this way, one can notice the fundamental need of resources provided by an adequate taxonomy for performing HRA; without these prerequisites the HRA would naturally become useless or inconsistent with the system being modeled.
One of the main challenges to analyze the occurrence of human error is the need of a formal language to standardize the concepts, i. e. a framework to link common code between multiple projects. In fact, it is the main target when developing a taxonomy. The subject of interest is thus to homogeneously classify errors to provide adequate data to be compared and/or aggregated for analytical studies. In an effort to evolve with this theme, (Rasmussen 1982) presents a framework to discuss the operator behavior characteristic, during a performance task, in three domains:
1. Skill-based, tasks that require manual skills; “In the skill-based domains, including automated, more or less subconscious routines, performance is controlled by stored patterns of behavior in a time-space domain. Errors are related to variability of force, space or time coordination”(Rasmussen 1982)
2. Rule-based, tasks based on predefined procedures, require training; “The rule-based domain includes performance in familiar situations controlled by stored rules for coordination of subroutines, and errors are typically related to mechanisms like wrong classification or recognition of situations, erroneous associations to tasks, or to memory slips in recall of procedures”(Rasmussen 1982); and
3. Knowledge-based, complex tasks, require decision, require attention; “The third behavioral domain is called upon in case of unique, unfamiliar situations for which actions must be planned from an analysis and decision based on knowledge of the functional, physical properties of the system and the priority of the various goals. In this domain, the internal data processing functions used for the task are very person and situation dependent and vary with details in the task context, with the extent and type of knowledge immediately available to the person, and with his subjective preferences. In general, errors in this domain can only be defined in relation to the goal of the task and generic error mechanisms can only be defined from very detailed studies based on verbal protocols which can supply data on the actual data process”(Rasmussen 1982).
This taxonomy proposed by Rasmussen classifying the human error in three domains had emerged as a promising way for classifying these kinds of events. However, a criticism to be made to such alternative concerns of this generality in the sense that the resulting classification does not achieve the causes of the human error, an important information for dealing with complex systems like the Power Electric ones. It was yet necessary a deeper analysis to understand the operator behavior during a performance task that produced a human error in an intervention of Power Electric Systems, for instance.
In response to this claim, in 1990, Reason presented a classification deeper than the Rasmussen’s one. He proposes a taxonomy based on the operator behavior during a performance task based in cognitive characteristics. “Three distinctions have proved useful in identifying the various origins of less than adequate (LTA) performance. Such distinctions are also important since different types of human error have different psychological origins, occurring in different parts of the system, and requiring different methods for remediation” (Reason and Maddox 2005). Reason firstly proposes two ways in which this error can occur: slips and mistakes.
1. Slips: “First, the plan of action may be perfectly adequate, but the actions do not go as planned. That is, we planned to do the right thing, but something happened that prevented us from doing it properly. Some necessary act(s) may be omitted or an unwanted act(s) may intrude. Alternatively, the right actions can be carried out, but in the wrong order, or in relation to the wrong objects, or poorly timed, or clumsily executed. These are execution failures and are commonly termed slips, lapses, trips, or fumbles” (Reason and Maddox 2005).
2. Mistakes: “The second potential locus of error is in the planning itself. The actions may go entirely as planned, but the plan itself is not adequate to achieve its intended outcome. These are higher-level failures, termed mistakes, associated with the formulation of the plan.” (Reason and Maddox 2005).
“Slips and lapses are errors which result from some failure in the execution and/or storage stage of action sequence, regardless of whether or not the plan which guided them was adequate to achieve its objective” (Reason 1990). The main difference of slip and lapse is that whereas slips are observable as externalized actions not as planned, the lapses involve failures of memory. “Mistakes may be defined as deficiencies or failure in the judgmental and/or inferential process involved in the selection of an objective or in the specification of the means to achieve it, irrespective of whether or not the actions directed by this decision-scheme run according to plan” (Reason 1990). Derivate in large part from Rasmussen’s classification, Reason proposed a conceptual framework – the generic error modeling system (GEMS), integrating the skill-rule-knowledge classification from Rasmussen with the slip-lapse-mistake from Reason. Using this framework, Reason subdivides the human error behavior in a sort of deeper modes of failure to characterize the error. Reason in (Reason and Maddox 2005) defines modes of failure: “in that errors arise from being in the wrong control mode with respect to current demands of the task. That is, the higher levels of the cognitive system are running open-loop (in relation to the moment-to-moment control of the actions) when they should have been closed-loop, and conversely”. Analyzing the operator behavior when he is erring, it makes possible to classify this behavior according the Reason’s framework. See Table 1.
In the face of the current needs, this framework could be considered a good tool to classify the human error in systems like the Power Electric ones. Reason went deep in cognitive behavior, analyzing each error type (slip, lapse or mistake) into the appropriated domain (skill-based, rule-based and knowledge-based) and mainly describing a good sub-division for the modes of failure. Each error type on the Power Electric System could be then sub-divided into specific failure modes to permit better (deeper) classification of the error during an intervention (operator and/or maintenance). This “better” classification can help the analyst to know the real reason underlying the operator when erring and this will permit alternative proposals to mitigates; minimize the outcomes or even to lead to the total blockade of the undesirable consequences of the error. Analyzing the failure mode makes possible to discover needs of more training in the specific task or psychological intervention to focus the operator attention during the execution of important and critical tasks. In some situations, it is possible to find out some physiological or psychological diseases, like alcohol addict, or worse pathologies. Critical tasks need attention focus to avoid slips and lapses. To avoid mistakes it is necessary an advanced mental state of the operator to make correct decision on time, using his mental experience and good mental health.
Although jointing the Reason and Rasmussen taxonomy promotes a good shape to classify the human error on Power Electric Systems, and permit the analyst suggest measures to avoid and/or mitigate the outcomes of human error, it is yet incomplete. The knowledge of error failure mode says nothing about the elementary behavior of the operator during the failed action. What action the operator was doing when the error occurred? Verifying? Comparing? Locating? It was yet necessary compare this classification with the elementary behavior that causes the human error: a third level of detail. This knowledge is necessary to complete the diagnosis of the human error.
In order to achieve theses goals, it is proposed here to hybrid the Rasmusen-Reason framework (Table 1) with the reasoning underlying (Berliner, Angell et al. 1964). The related methodology aimed at proposing a taxonomy for models of information processing that translates through verbs, units of behavior in relation to processes of perception, cognition, action and communication. The units of behavior are presented in Table 2
In a recent work, (Begosso 2005) presents the S.PERERE, a software directed to simulate the human error according to the hybridism of the taxonomies proposed by Rasmussen and Reason to classify the human error in interaction men machine. To create an algorithm to simulate the human behavior, he also included the (Berliner, Angell et al. 1964) classification.
Aggregating these three sources: Rasmussen taxonomy, Reason taxonomy with the taxonomy of Berliner is possible to promote the development of a unique taxonomy describe the human error on a Power Electric System in a more complete form. With this unified taxonomy, the human error could be classified using: the three domains of errors (skill, rule or knowledge); the type of error (slip, lapse or mistake); the failure mode and the verb which represents human behavior at the time of occurrence of the error. This more fully classification will allows the analyst build a table with the human error description and classifications of a set of occurrences collected in field about interventions on the Power Electric System that resulted in Power Electric System interruptions caused for human error. This table with the human error collected, forming a data base to explore statistically and create information about the reasons and outcomes these human errors. This statistic analysis could be shows bias, correlation and look for answers which can point possible change of procedures to reduce the human error. Applying descriptive statistics in this table is possible to infer recurrent features of human error that can be worked out internally in the organization to minimize the outcome of power electric system interruptions, during necessary operate and/or maintenance interventions. Thus, this paper propose this unified taxonomy framework, based on some of the main references of human reliability literature.
The following section describes the data collection in a Power Electric Company according to the proposed taxonomy; the building of the table with 131 cases of human error which resulted in power electric system interruptions and the application of this taxonomy proposed. Additionally are present two examples to show how to apply the taxonomy in real cases.
3. THE APPLICATION OF THE TAXONOMY PROPOSED IN A BRAZILIAN POWER ELECTRIC COMPANY
This part describes how the Human Error data were collected from a Brazilian Power Electric Company, how the Human Error Reports named RSHE (report shutdown by human error) were analyzed and how the tables: “Summary of Occurrences” and “Human Error Data Base Table” were builder, using the taxonomy proposed above.
The Brazilian Power Electric Company studied, has collected and classified Human Errors since 1998. The resulting data has been used as a decision index to formulate its non interrupt system safety policy. Discontinuities in the Electric System Operarating are penalized with fines, by the Regulatory Agency (ANEEL). These fines are of high values and proportional to the time of electric system interruption and the load interrupted. In this context the Human Error represents an important index on quality of energy offered to the consumers. These human error reports (RSHE) are founded in a data base on the company and not available to the public.
Since 1998 to 2009, there are available 605 reports relating human errors in electric power system intervention. See Table 3
Each human error in complex systems such as the Electric Power must be analyzed so its mechanism are understood, but in a big universe of information it’s necessary to choice the mainly events to apply taxonomy, due to be a very complex task analyze each of one human error reports. Each 605 human error reports were analyzed and 474 of them didn’t cause load interruption. For example, the load was immediately transferred for other power source or the load didn’t be energized, or it was released for maintenance. These 474 human errors reports were not considered because they not represent great loses for the company. On the other hand the 131 remains human errors caused great loses. One by one of these 131 human errors report were analyzed in details and classified according the taxonomy proposed above.
Each human error report is standardized and has the follow information about the system configuration:
• An event description: with date, time, place and a summary description of the human error;
• A system configuration;
• Historical occurrence: with the task step by step and on chronological sequence;
• Relevant facts and data about the event;
• Task analysis;
• Operational performance analysis;
• Ishikawa’s diagram;
• Steps taken;
• Action plan to avoid the repetition of this event;
• Conclusions
• Responsible for preparing the report
These reports have enough information to enable an expert in Electrical Engineering to know the real cause of the human error. However, for classify the human error using the Rasmussen/Reason and Berliner taxonomy as above proposed, it is a difficult task. To get this objective is essential begin classifying firstly the error level (skill, rule or knowledge), so the error type, so the mode of the error and finally the Berlinner process and the elementary behavior.
To illustrate the application of these proposal taxonomy two real cases examples, extract from “Summary of Occurrences” be presented. The first example was choosing as active failure during the maneuver operation for de-energizing a circuit breaker and the second example as a latent failure during maintenance to fit a protective relay.
Example 1: The operator shut off the 12J1 circuit breaker when he must shut off the 12J2 circuit breaker near in the some panel.
Report error n. 046 April, 20 2001, load interrupted 8,00MW. Summarized description:
Upon completion of the maintenance was begun the process of returning the circuit to operate the installation, and inspections by operators normalized in the courtyard and started the actions of control room, with the drive lock 12J2, and confirmed its closure through signaling in the panel and also a positive sign that the person responsible for maintenance, from the courtyard toward the control room, heard the characteristic sound of the circuit breaker closing. Then the operator went to the panel 12J1, (identical to the neighbor and 12J2), made the opening of 12J1 (thinking that by taking the opening 12J2), confirmed the signs on the panel and got a positive sign of the maintainer (which also moved into the control room. and once again heard the characteristic sound of the drive circuit breaker). The operator recorded the time (16:15 h), signed the card confirming receipt of the breaker, and consulted Program Maneuvers normalization of 12J2. Right now, received a call from CROL questioning what was going on in the installation, because there was a complaint of COSERN, as the lack of tension in Tangara, at which time the operator saw maneuvering wrong breaker.
Analyze:
Clearly was a failure in domain of skill-based, the rule was correct and the operator selected a wrong object due similarity with desirable object, soon the operator committed a slip. The operator perform tasks without paying due attention to what they are doing, this is a definition for perceptual confusion as failure mode. The operator failures in perceive the correct breaker identification; soon his elementary behavior during the error was identify during a perceptive process.
In short:
Domain: skill-based
Type: slip
Mode of failure: perceptual confusion
Process: perceptive
Elementary behavior: identify
Example 2: the maintenance technician didn’t make correct rely adjust. When the operator push the breaker bottom, occurred the interruption.
Report error n. 012 March, 03 1999, load interrupted 11,00MW. Summarized description:
Performance of the under frequency relay (81) causing the automatic shutdown of LT 02V6. As the frequency variation would not be sufficient to actuate the relay 81 of the SE GVM, the SSCP scheduled inspection / testing in the scheme, noting that timing (62-1) of the relay 81 was incorrect, and we found a value adjusted to 5.0 s, when the value set by the setting order is 11.0. The last change in this setting relay was held for nearly three years. The setting order sent to change the relay time (62-1) of 5.0 s to 11.0 s. However,
found himself in the form of measuring time of 5.0 s recorded in field
"left." We also observed that the relay is defective, not accepting
adjustments in excess of 10.0 s.
Analyze:
The Setting Order Instructions content rules to adjust relays. As the maintenance technician applied the rule incorrectly, your error was in domain of rule-based. In consequence he committed a mistake. For the technical maintenance, certain properties of the space problem may have been coded inaccurately; this is encoding deficiencies, according the failure mode. The technician failure to examine carefully, and see with critical sense the setting order, soon his elementary behavior during the error was inspect during a perceptive process.
In short:
Domain: rule-based
Type: mistake
Mode of failure: encoding deficiencies
Process: perceptive
Elementary behavior: inspect
4. CONCLUSIONS AND FURTHER WORKS
This paper discussed the importance of electric energy nowadays and a necessity of maintain the source uninterrupted for the costumers. After the great development of equipment and work process reliability, the focus shifted to human error. Subsequently, it was presented a brief review of human error taxonomy since Rasmussen 1982 towards Reason and Hollnagel until now in 2010. Aggregating the taxonomy proposed by Rasmussen and Reason with the taxonomy proposed by Berliner with the verbs that define elementary behavior, was proposed a new taxonomy specific shaped to Electric Power System. This taxonomy proposed was applied in 131 real cases from a Brazilian Electric Power Company. Despite the difficulty to identify the failure mode of error in each case analyzed, duded data recorded by the Company, the taxonomy showed efficiency to classify the human error involved in a power electric system intervention.
To analyze the 131 human error reports was created a table with the complete classification. For future works this table with the human error collected, forming a data base to explore statistically and create information about the reasons and outcomes these human errors. This statistic analysis could be shows bias, correlation and look for answers which can point possible change of procedures to reduce the human error. Applying descriptive statistics in this table is possible to infer recurrent features of human error that can be worked out internally in the organization to minimize the outcome of power electric system interruptions, during necessary operate and/or maintenance interventions.
REFERENCES
1 . Rasmussen, J. (1999). "The concept of human error: is it useful for the design of safe systems?" Safety Science Monitor 3.
2 . Rasmussen, J. (2003). "The role of error in organizing behaviour." Quality Safety Health Care - QSHC 12: 377-383.
3 . Hollnagel, E. (1998). Cognitive Reliability and Error Analysis Method, Elsevier.
4 . Reason, J. (1990). Human Error. Cambridge, Cambridge University Press.
5 . Reason, J. and M. Maddox (2005). Human Error, NextPage LivePublish
6 . Menezês, R. C. and E. L. Droguett (2005). Uma metodologia para a avaliacão da confiabilidade humana em atividades de substituicão de cadeias de isoladores em linhas de transmissão. Recife, Universidade Federal de Pernambuco.
7 . Swain, A. D. and H. E. Guttmann (1983). Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Application. Washington, US Nuclear Regulatory Comission.
8 . Rasmussen, J. (1982). "Human Error A Taxonomy for Describing Human Malfunction in Industrial Installation." Journal of Occupational Accidents 4: 311-333.
9 . Berliner, D. C., D. Angell, et al. (1964). Behaviors, mesures and instruments for performance evaluation in simulated environments. Symposium and Workshop on the Quantification of Human Performance. Albuquerque - New Mexico: 277-296.
10 . Begosso, L. C. (2005). S.PERERE - Uma Ferramenta Apoiada por Arquiteturas Cognitivas para o Estudo da Confiabilidade Humana. Engneharia Elétrica. São Paulo, Escola Politécnica da Universidade de São Paulo. Doutor: 274.
BIOGRAPHIES
Romulo Fernando Teixeira Vilela
Department of Production Engineering Federal University of Pernambuco S/N Academico Helio Ramos Avenue Recife, Pernambuco 50000-000 Brazil
rftvilela@gmail.com
Romulo F. T. Vilela is a Reliability Engineering Researcher on technologic risk group from the Production Engineering Department at the Federal University of Pernambuco (Brazil). He holds a bachelors degree in Electric Engineering from the Federal University of Pernambuco (1980) and a master science degree in Production Engineering from the University of Pernambuco (2001).
Enrique L. Droguett
Department of Production Engineering Federal University of Pernambuco S/N Academico Helio Ramos Avenue Recife, Pernambuco 50000-000 Brazil
ealopez@ufpe.br
Enrique L. Droguett is an associate professor at the Federal University of Pernambuco (Brazil), Department of Production Engineering. His research interests include Bayesian treatment of uncertain evidence and methods for Probabilistic Risk Assessment. He received his Ph. D. from the University of Maryland (1999).
segunda-feira, 21 de março de 2011
Amor Líquido
Esta é uma visão minha dos principais pontos que considerei relevantes no livro de
Zygmunt Bauman – Editora Zahar – 2003, Amor Líquido.
Apaixonar-se e desapaixonar-se
O amor e a morte – os dois personagens principais desta história sem trama nem desfecho, mas que condensa a maior parte do som e da fúria da vida.
O amor e a morte não têm história própria. São eventos que ocorrem no tempo humano – eventos distintos, não conectados (muito menos de modo casual) com eventos “similares”, a não ser na visão de instituições ávidas por identificar – (por inventar) – retrospectivamente essas conexões e compreender o incompreensível.
... a fé na regularidade do mundo e na previsibilidade dos eventos, indispensável para nossa saúde mental.
Em todo amor há pelo menos dois seres, cada qual a grande incógnita na equação do outro.
Amar significa abrir-se ao destino, a mais sublime de todas as condições humanas, em que o medo se funde ao regozijo num amalgama irreversível.
E assim é numa cultura consumista como a nossa, que favorece o produto pronto para uso imediato, o prazer passageiro, a satisfação instantânea, resultados que não exijam esforços prolongados, receitas testadas, garantias de seguro total e devolução do dinheiro.
Sem humildade e coragem não há amor. Essas duas qualidades são exigidas, em escalas enormes e continuas, quando se ingressa numa terra inexplorada e não-mapeada.
Todo amor empenha-se em subjugar, mas quando triunfa encontra a derradeira derrota. Todo amor luta para enterrar as fontes de sua precariedade e incerteza, mas, se obtém êxito, logo começa a se enfraquecer – e definhar.
Assim, a tentação de apaixonar-se é grande e poderosa, mas também o é a atração de escapar.
Os produtos de consumo atraem, os refugos repelem. Depois do desejo vem a remoção dos refugos.
O amor, por outro lado, é a vontade de cuidar, e de preservar o objeto cuidado. Um impulso centrifugo, ao contrario do centrípeto desejo. Um impulso de expandir-se, ir alem, alcançar o que “está lá fora”. Ingerir, absorver e assimilar o sujeito no objeto, e não vice-versa, como no caso do desejo.
Se o desejo quer consumir, o amor quer possuir. Enquanto a realização do desejo coincide com a aniquilação de seu objeto, o amor cresce com a aquisição deste e se realiza na sua durabilidade. Se o desejo se autodestrói, o amor se auto-perpetua.
Guiada pelo impulso (“seus olhos se cruzam na sala lotada”), a parceria segue o padrão do shopping e não exige mais que as habilidades de um consumidor médio, moderadamente experiente. Tal como outros bens de consumo, ela deve ser consumida instantaneamente (não requer maiores treinamentos nem uma preparação prolongada) e usada uma só vez, “sem preconceito”. É, antes de mais nada, eminentemente descartável.
Quando a insegurança sobe a bordo, perde-se a confiança, a ponderação e a estabilidade da navegação. À deriva, a frágil balsa do relacionamento oscila entre as duas rochas nas quais muitas parcerias esbarram a submissão e o poder absolutos, a aceitação humilde e a conquista arrogante, destruindo a própria autonomia e sufocando a do parceiro.
Uma “relação de bolso” é a encarnação da instantaneidade e da disponibilidade.
Mas nem mesmo os casamentos, ao contrario da insistência sacerdotal, são feitos no céu, e o que foi unido por seres humanos estes podem – e têm permissão para – desunir, e o farão se tiverem uma oportunidade.
Viver juntos pode significar dividir o barco, a ração e o leito da cabine. Pode significar navegar juntos e compartilhar as alegrias e agruras da viagem. Mas nada tem a ver com a passagem de uma margem à outra, e portanto seu propósito não é fazer o papel das solidas pontes (ausentes).
Dentro e fora da caixa de ferramentas da sociabilidade
Quando o sexo se apresenta como um evento fisiológico do corpo e a palavra “sensualidade” pouco evoca senão uma prazerosa sensação física, ele não está liberado de fardos supérfluos, avulsos, inúteis, incômodos e restritivos. Está, ao contrario, sobrecarregado, inundado de expectativas que superam sua capacidade de realização.
O que caracteriza o consumismo não é acumular bens (quem o faz deve também estar preparado para suportar malas pesadas e casas atulhadas), mas usá-los e descartá-los em seguida a fim de abrir espaço para outros bens e usos.
Qualificar os parceiros sexuais tornou-se o primeiro foco de ansiedade. Que tipo de compromisso, se é que algum, a união de corpos impõe? De que forma eles afetam o futuro dos parceiros, se é que afetam? O encontro sexual pode ser isolado dos demais propósitos da vida, ou será que ele vai (tender a, ganhar espaço para) esparramar-se pelo resto da existência, saturando-a e transformando-a?
... se a substância da atividade sexual é a obtenção do prazer instantâneo, “então o mais importante não é o que se faz, mas simplesmente que aconteça.
Desse modo, não importa muito se as predileções sexuais (articuladas como “identidade sexual”) são “dons da natureza”ou “construtos culturais”. O que realmente importa é se cabe ao homo sexualis determinar (descobrir ou inventar) qual (ou quais) das múltiplas identidades sexuais melhor se ajusta a ele ou ela, ou se, tal como o homo sapiens no caso da “comunidade de nascimento”, ele ou ela está destinado (a) a abraçar esse destino e viver sua vida de uma forma que transforme uma sina inalterável numa vocação pessoal.
O homo sexualis esta condenado a permanecer para sempre incompleto e irrealizado – mesmo numa era em que o fogo sexual, que no passado se teria arrefecido, agora deve ser, espera-se, novamente insuflado pelos esforços conjuntos de nossas ginásticas miraculosas e de nossos remédios maravilhosos. A viagem nunca termina, o itinerário é recomposto a cada estação e o destino final é sempre desconhecido.
E lembre-se, claro, de que apostar todas as suas fichas em um só número é a máxima insensatez.
“Nós entramos em nossas casas separadas e fechamos a porta, e então entramos em nossos quartos separados e fechamos a porta. A casa torna-se um centro de lazer multiuso em que os membros da família podem viver, por assim dizer, separadamente lado a lado”.
Terminar quando se deseje – instantaneamente, sem confusão, sem avaliação de perdas e sem remorsos.
E o namoro pela internet, ao contrario da incomoda negociação de compromissos mútuos, se ajusta perfeitamente (ou quase) aos novos padrões de escolha racional.
Sobre a dificuldade de amar o próximo
... nenhum tormento pode ser maior do que aquilo que um único ser humano pode sofrer.
... todos os outros valores só são valores na medida em que sirvam à dignidade humana e promovam a sua causa.
A negação da dignidade humana deprecia o valor de qualquer causa que necessite dessa negação para afirmar a si mesma. E o sofrimento de uma única criança deprecia esse valor de forma tão radical e completa quanto o sofrimento de milhões.
... não pode haver atalhos que conduzam a um mundo feito sob medida para a dignidade humana, e ao mesmo tempo é improvável que o “mundo realmente existente”, construído dia a dia por pessoas já espoliadas de sua dignidade e desacostumadas a respeitar a das outras, possa algum dia ser refeito segundo essa medida.
O “relacionamento puro” tende a ser nos dias de hoje, a forma predominante de convívio humano, na qual se entra “pelo que cada um pode ganhar”e se “continua apenas enquanto ambas as partes imaginem que estão proporcionando a cada uma satisfações suficientes para permanecerem na relação.
... a incerteza é a terra natal da pessoa ética e o único solo em que a moral pode brotar e florescer.
As pessoas da “camada superior” não pertencem ao lugar que habitam, pois suas preocupações se situam (ou melhor, flutuam) alhures. Pode-se imaginar que, alem de serem deixadas sós e portanto livres para se dedicarem totalmente a seus passatempos, e tendo assegurados os serviços necessários para suas necessidades e confortos do dia-a-dia (como quer que os definam), elas não têm outros interesses na cidade em que se localizam as suas residências.
O mundo em que vive a outra camada de moradores da cidade, “inferior”, é o exato oposto do primeiro. Define-se, sobretudo por ser isolado daquela rede mundial de comunicação pela qual as pessoas da “camada superior” se conectam e com as quais suas vidas se sintonizam. Os habitantes urbanos da camada inferior estão “condenados a permanecerem locais”- e, portanto se espera, e deve-se esperar que sua atenção, repleta de descontentamentos, sonhos e esperanças, se concentre nos “assuntos locais”. Para eles, é dentro da cidade que habitam que a batalha pela sobrevivência e por um lugar decente no mundo é desencadeada, travada, por vezes ganha, mas geralmente perdida.
Os que podem, vivem em “condomínios”, planejados como se fosse uma ermida: fisicamente dentro, mas social e espiritualmente fora da cidade. “Supõe-se que as comunidades fechadas sejam mundos distintos. Nas propagandas que os anunciam propõe-se um ‘modo de vida completo’ que representaria uma alternativa à qualidade de vida oferecida pela cidade e seu espaço publico deteriorado”. Um traço muito importante do condomínio é seu “isolamento e distância da cidade... Isolamento significa separação daqueles considerados socialmente inferiores” e, como insistem os construtores e seus agentes imobiliários, “o fator chave para garanti-lo é a segurança. Isso significa cercas e muros rodeando o condomínio, guardas trabalhando 24 horas por dia no controlo das entradas e um conjunto de instalações e serviços” ”destinados a manter os outros do lado de fora”.
Convívio destruído
O estado-nação, como observa Giorgio Agamben, é um Estado que faz da “natividade ou nascimento” o “pilar de sua própria soberania”. “A ficção aqui implícita”, assinala Agamben, “é o que o nascimento (nascita) imediatamente ganha existência como nação, de modo que não pode haver diferença alguma entre os dois momentos”. A pessoa nasce, por assim dizer, na “cidadania do Estado”.
... o nascimento é eleito a única forma de ingresso “natural” nessa nação, sem exigência de testes nem questionários.
Na medida em que o “Estado de direito” foi se transformando, de modo gradual mas irresistível (já que sob as constantes pressões da construção de legitimidade e da mobilização ideológica), no “Estado-nação”, este casamento se transformou num ménage à trois: uma trindade constituída de território, Estado e nação. Pode-se supor que o advento dessa trindade tenha sido um acidente histórico, ocorrida numa única e relativamente diminuta parte do globo; mas uma vez que essa parte, embora pequena, veio a reclamar a posição de metrópole dotada de recursos suficientes para transformar o resto do planeta em periferia, e arrogante o bastante para esquecer ou desacreditar suas próprias peculiaridades, e como é prerrogativa da metrópole estabelecer e impor as regras pelas quais a periferia é obrigada a viver, a superposição/mistura de nação, Estado e território se tornou uma norma de vinculação global.
Não pertencem verdadeiramente ao país em cujo território foram montadas suas cabanas portáteis. São separados do restante dele por uma cortina de suspeitas e ressentimentos que é invisível, mas ao mesmo tempo espessa e impenetrável.
O fato de outros discordarem de nos (não prezarem o que prezamos, e prezarem justamente o contrario; acreditarem que o convívio humano possa beneficiar-se de regras diferentes daquelas que consideramos superiores; acima de tudo, duvidarem de que temos acesso a uma linha direta com a verdade absoluta, e também de que sabemos com certeza onde uma discussão deve terminar antes mesmo de ter começado), isso não é um obstáculo no caminho que conduz à comunidade humana. Mas a convicção de que nossas opiniões são toda a verdade, nada alem da verdade e, sobretudo a única verdade existente, assim como nossa crença de que as verdades dos outros, se diferentes da nossa, são “meras opiniões”, esse sim é um obstáculo.
Zygmunt Bauman – Editora Zahar – 2003, Amor Líquido.
Apaixonar-se e desapaixonar-se
O amor e a morte – os dois personagens principais desta história sem trama nem desfecho, mas que condensa a maior parte do som e da fúria da vida.
O amor e a morte não têm história própria. São eventos que ocorrem no tempo humano – eventos distintos, não conectados (muito menos de modo casual) com eventos “similares”, a não ser na visão de instituições ávidas por identificar – (por inventar) – retrospectivamente essas conexões e compreender o incompreensível.
... a fé na regularidade do mundo e na previsibilidade dos eventos, indispensável para nossa saúde mental.
Em todo amor há pelo menos dois seres, cada qual a grande incógnita na equação do outro.
Amar significa abrir-se ao destino, a mais sublime de todas as condições humanas, em que o medo se funde ao regozijo num amalgama irreversível.
E assim é numa cultura consumista como a nossa, que favorece o produto pronto para uso imediato, o prazer passageiro, a satisfação instantânea, resultados que não exijam esforços prolongados, receitas testadas, garantias de seguro total e devolução do dinheiro.
Sem humildade e coragem não há amor. Essas duas qualidades são exigidas, em escalas enormes e continuas, quando se ingressa numa terra inexplorada e não-mapeada.
Todo amor empenha-se em subjugar, mas quando triunfa encontra a derradeira derrota. Todo amor luta para enterrar as fontes de sua precariedade e incerteza, mas, se obtém êxito, logo começa a se enfraquecer – e definhar.
Assim, a tentação de apaixonar-se é grande e poderosa, mas também o é a atração de escapar.
Os produtos de consumo atraem, os refugos repelem. Depois do desejo vem a remoção dos refugos.
O amor, por outro lado, é a vontade de cuidar, e de preservar o objeto cuidado. Um impulso centrifugo, ao contrario do centrípeto desejo. Um impulso de expandir-se, ir alem, alcançar o que “está lá fora”. Ingerir, absorver e assimilar o sujeito no objeto, e não vice-versa, como no caso do desejo.
Se o desejo quer consumir, o amor quer possuir. Enquanto a realização do desejo coincide com a aniquilação de seu objeto, o amor cresce com a aquisição deste e se realiza na sua durabilidade. Se o desejo se autodestrói, o amor se auto-perpetua.
Guiada pelo impulso (“seus olhos se cruzam na sala lotada”), a parceria segue o padrão do shopping e não exige mais que as habilidades de um consumidor médio, moderadamente experiente. Tal como outros bens de consumo, ela deve ser consumida instantaneamente (não requer maiores treinamentos nem uma preparação prolongada) e usada uma só vez, “sem preconceito”. É, antes de mais nada, eminentemente descartável.
Quando a insegurança sobe a bordo, perde-se a confiança, a ponderação e a estabilidade da navegação. À deriva, a frágil balsa do relacionamento oscila entre as duas rochas nas quais muitas parcerias esbarram a submissão e o poder absolutos, a aceitação humilde e a conquista arrogante, destruindo a própria autonomia e sufocando a do parceiro.
Uma “relação de bolso” é a encarnação da instantaneidade e da disponibilidade.
Mas nem mesmo os casamentos, ao contrario da insistência sacerdotal, são feitos no céu, e o que foi unido por seres humanos estes podem – e têm permissão para – desunir, e o farão se tiverem uma oportunidade.
Viver juntos pode significar dividir o barco, a ração e o leito da cabine. Pode significar navegar juntos e compartilhar as alegrias e agruras da viagem. Mas nada tem a ver com a passagem de uma margem à outra, e portanto seu propósito não é fazer o papel das solidas pontes (ausentes).
Dentro e fora da caixa de ferramentas da sociabilidade
Quando o sexo se apresenta como um evento fisiológico do corpo e a palavra “sensualidade” pouco evoca senão uma prazerosa sensação física, ele não está liberado de fardos supérfluos, avulsos, inúteis, incômodos e restritivos. Está, ao contrario, sobrecarregado, inundado de expectativas que superam sua capacidade de realização.
O que caracteriza o consumismo não é acumular bens (quem o faz deve também estar preparado para suportar malas pesadas e casas atulhadas), mas usá-los e descartá-los em seguida a fim de abrir espaço para outros bens e usos.
Qualificar os parceiros sexuais tornou-se o primeiro foco de ansiedade. Que tipo de compromisso, se é que algum, a união de corpos impõe? De que forma eles afetam o futuro dos parceiros, se é que afetam? O encontro sexual pode ser isolado dos demais propósitos da vida, ou será que ele vai (tender a, ganhar espaço para) esparramar-se pelo resto da existência, saturando-a e transformando-a?
... se a substância da atividade sexual é a obtenção do prazer instantâneo, “então o mais importante não é o que se faz, mas simplesmente que aconteça.
Desse modo, não importa muito se as predileções sexuais (articuladas como “identidade sexual”) são “dons da natureza”ou “construtos culturais”. O que realmente importa é se cabe ao homo sexualis determinar (descobrir ou inventar) qual (ou quais) das múltiplas identidades sexuais melhor se ajusta a ele ou ela, ou se, tal como o homo sapiens no caso da “comunidade de nascimento”, ele ou ela está destinado (a) a abraçar esse destino e viver sua vida de uma forma que transforme uma sina inalterável numa vocação pessoal.
O homo sexualis esta condenado a permanecer para sempre incompleto e irrealizado – mesmo numa era em que o fogo sexual, que no passado se teria arrefecido, agora deve ser, espera-se, novamente insuflado pelos esforços conjuntos de nossas ginásticas miraculosas e de nossos remédios maravilhosos. A viagem nunca termina, o itinerário é recomposto a cada estação e o destino final é sempre desconhecido.
E lembre-se, claro, de que apostar todas as suas fichas em um só número é a máxima insensatez.
“Nós entramos em nossas casas separadas e fechamos a porta, e então entramos em nossos quartos separados e fechamos a porta. A casa torna-se um centro de lazer multiuso em que os membros da família podem viver, por assim dizer, separadamente lado a lado”.
Terminar quando se deseje – instantaneamente, sem confusão, sem avaliação de perdas e sem remorsos.
E o namoro pela internet, ao contrario da incomoda negociação de compromissos mútuos, se ajusta perfeitamente (ou quase) aos novos padrões de escolha racional.
Sobre a dificuldade de amar o próximo
... nenhum tormento pode ser maior do que aquilo que um único ser humano pode sofrer.
... todos os outros valores só são valores na medida em que sirvam à dignidade humana e promovam a sua causa.
A negação da dignidade humana deprecia o valor de qualquer causa que necessite dessa negação para afirmar a si mesma. E o sofrimento de uma única criança deprecia esse valor de forma tão radical e completa quanto o sofrimento de milhões.
... não pode haver atalhos que conduzam a um mundo feito sob medida para a dignidade humana, e ao mesmo tempo é improvável que o “mundo realmente existente”, construído dia a dia por pessoas já espoliadas de sua dignidade e desacostumadas a respeitar a das outras, possa algum dia ser refeito segundo essa medida.
O “relacionamento puro” tende a ser nos dias de hoje, a forma predominante de convívio humano, na qual se entra “pelo que cada um pode ganhar”e se “continua apenas enquanto ambas as partes imaginem que estão proporcionando a cada uma satisfações suficientes para permanecerem na relação.
... a incerteza é a terra natal da pessoa ética e o único solo em que a moral pode brotar e florescer.
As pessoas da “camada superior” não pertencem ao lugar que habitam, pois suas preocupações se situam (ou melhor, flutuam) alhures. Pode-se imaginar que, alem de serem deixadas sós e portanto livres para se dedicarem totalmente a seus passatempos, e tendo assegurados os serviços necessários para suas necessidades e confortos do dia-a-dia (como quer que os definam), elas não têm outros interesses na cidade em que se localizam as suas residências.
O mundo em que vive a outra camada de moradores da cidade, “inferior”, é o exato oposto do primeiro. Define-se, sobretudo por ser isolado daquela rede mundial de comunicação pela qual as pessoas da “camada superior” se conectam e com as quais suas vidas se sintonizam. Os habitantes urbanos da camada inferior estão “condenados a permanecerem locais”- e, portanto se espera, e deve-se esperar que sua atenção, repleta de descontentamentos, sonhos e esperanças, se concentre nos “assuntos locais”. Para eles, é dentro da cidade que habitam que a batalha pela sobrevivência e por um lugar decente no mundo é desencadeada, travada, por vezes ganha, mas geralmente perdida.
Os que podem, vivem em “condomínios”, planejados como se fosse uma ermida: fisicamente dentro, mas social e espiritualmente fora da cidade. “Supõe-se que as comunidades fechadas sejam mundos distintos. Nas propagandas que os anunciam propõe-se um ‘modo de vida completo’ que representaria uma alternativa à qualidade de vida oferecida pela cidade e seu espaço publico deteriorado”. Um traço muito importante do condomínio é seu “isolamento e distância da cidade... Isolamento significa separação daqueles considerados socialmente inferiores” e, como insistem os construtores e seus agentes imobiliários, “o fator chave para garanti-lo é a segurança. Isso significa cercas e muros rodeando o condomínio, guardas trabalhando 24 horas por dia no controlo das entradas e um conjunto de instalações e serviços” ”destinados a manter os outros do lado de fora”.
Convívio destruído
O estado-nação, como observa Giorgio Agamben, é um Estado que faz da “natividade ou nascimento” o “pilar de sua própria soberania”. “A ficção aqui implícita”, assinala Agamben, “é o que o nascimento (nascita) imediatamente ganha existência como nação, de modo que não pode haver diferença alguma entre os dois momentos”. A pessoa nasce, por assim dizer, na “cidadania do Estado”.
... o nascimento é eleito a única forma de ingresso “natural” nessa nação, sem exigência de testes nem questionários.
Na medida em que o “Estado de direito” foi se transformando, de modo gradual mas irresistível (já que sob as constantes pressões da construção de legitimidade e da mobilização ideológica), no “Estado-nação”, este casamento se transformou num ménage à trois: uma trindade constituída de território, Estado e nação. Pode-se supor que o advento dessa trindade tenha sido um acidente histórico, ocorrida numa única e relativamente diminuta parte do globo; mas uma vez que essa parte, embora pequena, veio a reclamar a posição de metrópole dotada de recursos suficientes para transformar o resto do planeta em periferia, e arrogante o bastante para esquecer ou desacreditar suas próprias peculiaridades, e como é prerrogativa da metrópole estabelecer e impor as regras pelas quais a periferia é obrigada a viver, a superposição/mistura de nação, Estado e território se tornou uma norma de vinculação global.
Não pertencem verdadeiramente ao país em cujo território foram montadas suas cabanas portáteis. São separados do restante dele por uma cortina de suspeitas e ressentimentos que é invisível, mas ao mesmo tempo espessa e impenetrável.
O fato de outros discordarem de nos (não prezarem o que prezamos, e prezarem justamente o contrario; acreditarem que o convívio humano possa beneficiar-se de regras diferentes daquelas que consideramos superiores; acima de tudo, duvidarem de que temos acesso a uma linha direta com a verdade absoluta, e também de que sabemos com certeza onde uma discussão deve terminar antes mesmo de ter começado), isso não é um obstáculo no caminho que conduz à comunidade humana. Mas a convicção de que nossas opiniões são toda a verdade, nada alem da verdade e, sobretudo a única verdade existente, assim como nossa crença de que as verdades dos outros, se diferentes da nossa, são “meras opiniões”, esse sim é um obstáculo.
Assinar:
Postagens (Atom)